In recent years a new state of matter has appeared on the scene: the supersolid. This has both the crystal structure of a solid and the properties of a superfluid, a quantum fluid that can flow without friction. We show that an established method for forming supersolids in a one-dimensional crystal–by tuning how the particles interact with one another–fails to reach supersolidity in two dimensions. However, by developing a new theoretical technique we demonstrate that cooling a gas of magnetic atoms directly into the supersolid regime is a viable method for creating two-dimensional supersolids in round, pancake-shaped traps. This leads us to the experimental observation of the first supersolid in a round trap, and opens the door to future theoretical studies of the crystal growth.
You can find out more about this in our paper.