Vortices in a supersolid

Vortices in a supersolid

2024’s Biggest Breakthroughs in Physics: Our research on the observation of vortices in a dipolar supersolid featured by Quanta magazine!

2025 Postdoc & PhD Openings!

2025 Postdoc & PhD Openings!

We are happy to announce that our dipolar quantum gas group has Postdoc and four PhD positions open for 2025!

Austrian of the Year 2024

Austrian of the Year 2024

Francesca was crowned as the ‘Austrian of the Year’ in the research category at the Austria 24 gala by Die Presse!

Summer BBQ

Summer BBQ

Our 2024 Summer BBQ took place on the 24th of June and celebrated the many different achievements of the group!

2024 PhD Openings!

2024 PhD Openings!

We are happy to announce that our dipolar quantum gas group has two PhD positions open for 2024/2025!

Murder Mystery Dinner

Murder Mystery Dinner

Our 2024 group dinner took place on the 18th of January at CasoinN da Giorgio restaurant, with a 1920’s Murder Mystery theme!

Glitches in supersolids: links between neutron stars and quantum matter

Glitches in supersolids: links between neutron stars and quantum matter

By emulating the connection between a rotating supersolid phase and an external solid phase, we were able to replicate “glitches” – sudden jumps in the solid angular momentum driven by quantum vortices leaving the supersolid.

Cluster of Excellence Quantum Science Austria granted

Cluster of Excellence Quantum Science Austria granted

Three Clus­ters of Excel­lence in Inns­bruck have been funded! With highly endowed clusters of excellence, the Austrian Science Fund FWF creates Austrian flagships of basic research. The University of Innsbruck will coordinate the Cluster of Excellence for Quantum Sciences.

Bloch Oscillations

Bloch Oscillations

By letting an erbium quantum droplet fall under gravity through an optical lattice, it is possible to understand the inter-atomic interactions and quantum fluctuations through variations of the Bloch oscillation.  

ERC Advanced Grant DymetEr has been funded!

ERC Advanced Grant DymetEr has been funded!

Our group studies dipolar quantum gases made of  Erbium (Er) and Dysprosium (Dy) atoms. These extraordinarily magnetic species are a powerful new resource for reaching quantum simulation with strong connectivity, in which each atom is coupled to the other over long distances, and exploring exotic phases of matter that have no classical counterpart.

We have three labs: the ERBIUM LAB, where Er was Bose condensed for the first time ever, the Er-Dy LAB which studies quantum dipolar mixtures under a quantum-gas microscope, and the T-REQs LAB, where we trap Er atoms in arrays of optical tweezers for Rydberg physics. Recently, we have established a Theory Group aimed at studying and predicting dipolar phenomena in dipolar quantum gases and mixtures.

The group, led by Francesca Ferlaino, is jointly located at the  Institute for Experimental Physics (IExP) of the University of Innsbruck and at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, and it is part of  the Innsbruck Center for Ultracold Atoms and Quantum Gases

Follow our group’s updates on . and .

 

X Feed

Bluesky Feed



News from the labs

Now in PRL! We created a novel type of dipolar system made of two ultracold bosonic dipolar atoms bounded into a molecules.  This work is the result of a combined experimental and theoretical effort between our group, the  cold collisions group at  LAC  in France, and the theory group at Temple University (USA).
Keep Reading ...
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic Er167 fermions, spin polarized in the lowest Zeeman sublevel. In this system, elastic collisions arise purely from
Keep Reading ...
Now in Science! In the presence of isotropic interactions, the Fermi surface of an ultracold Fermi gas is spherical. Introducing anisotropic interactions can deform it. This effect is subtle and challenging to observe experimentally. We report the observation of such a Fermi surface deformation in a degenerate dipolar Fermi gas of
Keep Reading ...

 

Group news

Now in Nature Physics! Supersolids are fluid and solid at the same time. In jointly collaboration work, together with Thierry Giamarchi, theoretical physicist from the University of Geneva, we have for the first time investigated what happens when such a state is brought out of balance.
Keep Reading ...
Philipp and Gianmaria held their defenses for their PhD thesis and are now officially Doctors of Philosophy. Congratulations and we wish you all the best for your future!
Keep Reading ...
Lauriane and Francesca, together with Blair Blakie and Danny Bailly (Otago University), theoretically studied the supersolid phase diagram of dipolar quantum Bose gases in cylindrical geometries. The work is now published in Physical Review Research.
Keep Reading ...

Welcome and goodbye

No post found